Diversely Regularized Matrix Factorization for Accurate and Aggregately Diversified Recommendation

19 Oct 2022  ·  Jongjin Kim, Hyunsik Jeon, Jaeri Lee, U Kang ·

When recommending personalized top-$k$ items to users, how can we recommend the items diversely to them while satisfying their needs? Aggregately diversified recommender systems aim to recommend a variety of items across whole users without sacrificing the recommendation accuracy. They increase the exposure opportunities of various items, which in turn increase potential revenue of sellers as well as user satisfaction. However, it is challenging to tackle aggregate-level diversity with a matrix factorization (MF), one of the most common recommendation model, since skewed real world data lead to skewed recommendation results of MF. In this work, we propose DivMF (Diversely Regularized Matrix Factorization), a novel matrix factorization method for aggregately diversified recommendation. DivMF regularizes a score matrix of an MF model to maximize coverage and entropy of top-$k$ recommendation lists to aggregately diversify the recommendation results. We also propose an unmasking mechanism and carefully designed mi i-batch learning technique for accurate and efficient training. Extensive experiments on real-world datasets show that DivMF achieves the state-of-the-art performance in aggregately diversified recommendation.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here