Diverse, Top-k, and Top-Quality Planning Over Simulators

25 Aug 2023  ·  Lyndon Benke, Tim Miller, Michael Papasimeon, Nir Lipovetzky ·

Diverse, top-k, and top-quality planning are concerned with the generation of sets of solutions to sequential decision problems. Previously this area has been the domain of classical planners that require a symbolic model of the problem instance. This paper proposes a novel alternative approach that uses Monte Carlo Tree Search (MCTS), enabling application to problems for which only a black-box simulation model is available. We present a procedure for extracting bounded sets of plans from pre-generated search trees in best-first order, and a metric for evaluating the relative quality of paths through a search tree. We demonstrate this approach on a path-planning problem with hidden information, and suggest adaptations to the MCTS algorithm to increase the diversity of generated plans. Our results show that our method can generate diverse and high-quality plan sets in domains where classical planners are not applicable.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here