Distribution-Based Trajectory Clustering

8 Oct 2023  ·  Zi Jing Wang, Ye Zhu, Kai Ming Ting ·

Trajectory clustering enables the discovery of common patterns in trajectory data. Current methods of trajectory clustering rely on a distance measure between two points in order to measure the dissimilarity between two trajectories. The distance measures employed have two challenges: high computational cost and low fidelity. Independent of the distance measure employed, existing clustering algorithms have another challenge: either effectiveness issues or high time complexity. In this paper, we propose to use a recent Isolation Distributional Kernel (IDK) as the main tool to meet all three challenges. The new IDK-based clustering algorithm, called TIDKC, makes full use of the distributional kernel for trajectory similarity measuring and clustering. TIDKC identifies non-linearly separable clusters with irregular shapes and varied densities in linear time. It does not rely on random initialisation and is robust to outliers. An extensive evaluation on 7 large real-world trajectory datasets confirms that IDK is more effective in capturing complex structures in trajectories than traditional and deep learning-based distance measures. Furthermore, the proposed TIDKC has superior clustering performance and efficiency to existing trajectory clustering algorithms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here