Distribution-Aligned Fine-Tuning for Efficient Neural Retrieval

9 Nov 2022  ·  Jurek Leonhardt, Marcel Jahnke, Avishek Anand ·

Dual-encoder-based neural retrieval models achieve appreciable performance and complement traditional lexical retrievers well due to their semantic matching capabilities, which makes them a common choice for hybrid IR systems. However, these models exhibit a performance bottleneck in the online query encoding step, as the corresponding query encoders are usually large and complex Transformer models. In this paper we investigate heterogeneous dual-encoder models, where the two encoders are separate models that do not share parameters or initializations. We empirically show that heterogeneous dual-encoders are susceptible to collapsing representations, causing them to output constant trivial representations when they are fine-tuned using a standard contrastive loss due to a distribution mismatch. We propose DAFT, a simple two-stage fine-tuning approach that aligns the two encoders in order to prevent them from collapsing. We further demonstrate how DAFT can be used to train efficient heterogeneous dual-encoder models using lightweight query encoders.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods