Distributed Matrix Pencil Formulations for Prescribed-Time Leader-Following Consensus of MASs with Unknown Sensor Sensitivity

25 Apr 2024  ·  Hefu Ye, Changyun Wen, Yongduan Song ·

In this paper, we address the problem of prescribed-time leader-following consensus of heterogeneous multi-agent systems (MASs) in the presence of unknown sensor sensitivity. Under a connected undirected topology, we propose a time-varying dual observer/controller design framework that makes use of regular local and inaccurate feedback to achieve consensus tracking within a prescribed time. In particular, the developed analysis framework is applicable to MASs equipped with sensors of different sensitivities. One of the design innovations involves constructing a distributed matrix pencil formulation based on worst-case sensors, yielding control parameters with sufficient robustness yet relatively low conservatism. Another novelty is the construction of the control gains, which consists of the product of a proportional coefficient obtained from the matrix pencil formulation and a classic time-varying function that grows to infinity or a novel bounded time-varying function. Furthermore, it is possible to extend the prescribed-time distributed protocol to infinite time domain by introducing the bounded time-varying gain technique without sacrificing the ultimate control accuracy, and the corresponding technical proof is comprehensive. The effectiveness of the method is demonstrated through a group of 5 single-link robot manipulators.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here