Paper

Distributed generation of privacy preserving data with user customization

Distributed devices such as mobile phones can produce and store large amounts of data that can enhance machine learning models; however, this data may contain private information specific to the data owner that prevents the release of the data. We wish to reduce the correlation between user-specific private information and data while maintaining the useful information. Rather than learning a large model to achieve privatization from end to end, we introduce a decoupling of the creation of a latent representation and the privatization of data that allows user-specific privatization to occur in a distributed setting with limited computation and minimal disturbance on the utility of the data. We leverage a Variational Autoencoder (VAE) to create a compact latent representation of the data; however, the VAE remains fixed for all devices and all possible private labels. We then train a small generative filter to perturb the latent representation based on individual preferences regarding the private and utility information. The small filter is trained by utilizing a GAN-type robust optimization that can take place on a distributed device. We conduct experiments on three popular datasets: MNIST, UCI-Adult, and CelebA, and give a thorough evaluation including visualizing the geometry of the latent embeddings and estimating the empirical mutual information to show the effectiveness of our approach.

Results in Papers With Code
(↓ scroll down to see all results)