Combining Contention-Based Spectrum Access and Adaptive Modulation using Deep Reinforcement Learning

24 Sep 2021  ·  Akash Doshi, Jeffrey G. Andrews ·

The use of unlicensed spectrum for cellular systems to mitigate spectrum scarcity has led to the development of intelligent adaptive approaches to spectrum access that improve upon traditional carrier sensing and listen-before-talk methods. We study decentralized contention-based medium access for base stations (BSs) of a single Radio Access Technology (RAT) operating on unlicensed shared spectrum. We devise a distributed deep reinforcement learning-based algorithm for both contention and adaptive modulation, modelled on a two state Markov decision process, that attempts to maximize a network-wide downlink throughput objective. Empirically, we find the (proportional fairness) reward accumulated by a policy gradient approach to be significantly higher than even a genie-aided adaptive energy detection threshold. Our approaches are further validated by improved sum and peak throughput. The scalability of our approach to large networks is demonstrated via an improved cumulative reward earned on both indoor and outdoor layouts with a large number of BSs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here