Distributed Deep Neural Networks over the Cloud, the Edge and End Devices

6 Sep 2017  ·  Surat Teerapittayanon, Bradley McDanel, H. T. Kung ·

We propose distributed deep neural networks (DDNNs) over distributed computing hierarchies, consisting of the cloud, the edge (fog) and end devices. While being able to accommodate inference of a deep neural network (DNN) in the cloud, a DDNN also allows fast and localized inference using shallow portions of the neural network at the edge and end devices. When supported by a scalable distributed computing hierarchy, a DDNN can scale up in neural network size and scale out in geographical span. Due to its distributed nature, DDNNs enhance sensor fusion, system fault tolerance and data privacy for DNN applications. In implementing a DDNN, we map sections of a DNN onto a distributed computing hierarchy. By jointly training these sections, we minimize communication and resource usage for devices and maximize usefulness of extracted features which are utilized in the cloud. The resulting system has built-in support for automatic sensor fusion and fault tolerance. As a proof of concept, we show a DDNN can exploit geographical diversity of sensors to improve object recognition accuracy and reduce communication cost. In our experiment, compared with the traditional method of offloading raw sensor data to be processed in the cloud, DDNN locally processes most sensor data on end devices while achieving high accuracy and is able to reduce the communication cost by a factor of over 20x.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here