Paper

Disentangled Representation Learning with Wasserstein Total Correlation

Unsupervised learning of disentangled representations involves uncovering of different factors of variations that contribute to the data generation process. Total correlation penalization has been a key component in recent methods towards disentanglement. However, Kullback-Leibler (KL) divergence-based total correlation is metric-agnostic and sensitive to data samples. In this paper, we introduce Wasserstein total correlation in both variational autoencoder and Wasserstein autoencoder settings to learn disentangled latent representations. A critic is adversarially trained along with the main objective to estimate the Wasserstein total correlation term. We discuss the benefits of using Wasserstein distance over KL divergence to measure independence and conduct quantitative and qualitative experiments on several data sets. Moreover, we introduce a new metric to measure disentanglement. We show that the proposed approach has comparable performances on disentanglement with smaller sacrifices in reconstruction abilities.

Results in Papers With Code
(↓ scroll down to see all results)