Discriminative Dimension Reduction based on Mutual Information

11 Dec 2019  ·  Orod Razeghi, Guoping Qiu ·

The "curse of dimensionality" is a well-known problem in pattern recognition. A widely used approach to tackling the problem is a group of subspace methods, where the original features are projected onto a new space. The lower dimensional subspace is then used to approximate the original features for classification. However, most subspace methods were not originally developed for classification. We believe that direct adoption of these subspace methods for pattern classification should not be considered best practice. In this paper, we present a new information theory based algorithm for selecting subspaces, which can always result in superior performance over conventional methods. This paper makes the following main contributions: i) it improves a common practice widely used by practitioners in the field of pattern recognition, ii) it develops an information theory based technique for systematically selecting the subspaces that are discriminative and therefore are suitable for pattern recognition/classification purposes, iii) it presents extensive experimental results on a variety of computer vision and pattern recognition tasks to illustrate that the subspaces selected based on maximum mutual information criterion will always enhance performance regardless of the classification techniques used.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here