Discovery of Nonlinear Dynamical Systems using a Runge-Kutta Inspired Dictionary-based Sparse Regression Approach

11 May 2021  ·  Pawan Goyal, Peter Benner ·

Discovering dynamical models to describe underlying dynamical behavior is essential to draw decisive conclusions and engineering studies, e.g., optimizing a process. Experimental data availability notwithstanding has increased significantly, but interpretable and explainable models in science and engineering yet remain incomprehensible. In this work, we blend machine learning and dictionary-based learning with numerical analysis tools to discover governing differential equations from noisy and sparsely-sampled measurement data. We utilize the fact that given a dictionary containing huge candidate nonlinear functions, dynamical models can often be described by a few appropriately chosen candidates. As a result, we obtain interpretable and parsimonious models which are prone to generalize better beyond the sampling regime. Additionally, we integrate a numerical integration framework with dictionary learning that yields differential equations without requiring or approximating derivative information at any stage. Hence, it is utterly effective in corrupted and sparsely-sampled data. We discuss its extension to governing equations, containing rational nonlinearities that typically appear in biological networks. Moreover, we generalized the method to governing equations that are subject to parameter variations and externally controlled inputs. We demonstrate the efficiency of the method to discover a number of diverse differential equations using noisy measurements, including a model describing neural dynamics, chaotic Lorenz model, Michaelis-Menten Kinetics, and a parameterized Hopf normal form.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here