DISCO Might Not Be Funky: Random Intelligent Reflective Surface Configurations That Attack

Emerging intelligent reflective surfaces (IRSs) significantly improve system performance, but also pose a signifcant risk for physical layer security (PLS). Unlike the extensive research on legitimate IRS-enhanced communications, in this article we present an adversarial IRS-based fully-passive jammer (FPJ). We describe typical application scenarios for Disco IRS (DIRS)-based FPJ, where an illegitimate IRS with random, time-varying reflection properties acts like a "disco ball" to randomly change the propagation environment. We introduce the principles of DIRS-based FPJ and overview existing investigations of the technology, including a design example employing one-bit phase shifters. The DIRS-based FPJ can be implemented without either jamming power or channel state information (CSI) for the legitimate users (LUs). It does not suffer from the energy constraints of traditional active jammers, nor does it require any knowledge of the LU channels. In addition to the proposed jamming attack, we also propose an anti-jamming strategy that requires only statistical rather than instantaneous CSI. Furthermore, we present a data frame structure that enables the legitimate access point (AP) to estimate the statistical CSI in the presence of the DIRS jamming. Typical cases are discussed to show the impact of the DIRS-based FPJ and the feasibility of the anti-jamming precoder. Moreover, we outline future research directions and challenges for the DIRS-based FPJ and its anti-jamming precoding to stimulate this line of research and pave the way for practical applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here