Paper

Direct loss minimization algorithms for sparse Gaussian processes

The paper provides a thorough investigation of Direct loss minimization (DLM), which optimizes the posterior to minimize predictive loss, in sparse Gaussian processes. For the conjugate case, we consider DLM for log-loss and DLM for square loss showing a significant performance improvement in both cases. The application of DLM in non-conjugate cases is more complex because the logarithm of expectation in the log-loss DLM objective is often intractable and simple sampling leads to biased estimates of gradients. The paper makes two technical contributions to address this. First, a new method using product sampling is proposed, which gives unbiased estimates of gradients (uPS) for the objective function. Second, a theoretical analysis of biased Monte Carlo estimates (bMC) shows that stochastic gradient descent converges despite the biased gradients. Experiments demonstrate empirical success of DLM. A comparison of the sampling methods shows that, while uPS is potentially more sample-efficient, bMC provides a better tradeoff in terms of convergence time and computational efficiency.

Results in Papers With Code
(↓ scroll down to see all results)