Direct and indirect reinforcement learning

23 Dec 2019  ·  Yang Guan, Shengbo Eben Li, Jingliang Duan, Jie Li, Yangang Ren, Qi Sun, Bo Cheng ·

Reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. In this paper, we classify RL into direct and indirect RL according to how they seek the optimal policy of the Markov decision process problem. The former solves the optimal policy by directly maximizing an objective function using gradient descent methods, in which the objective function is usually the expectation of accumulative future rewards. The latter indirectly finds the optimal policy by solving the Bellman equation, which is the sufficient and necessary condition from Bellman's principle of optimality. We study policy gradient forms of direct and indirect RL and show that both of them can derive the actor-critic architecture and can be unified into a policy gradient with the approximate value function and the stationary state distribution, revealing the equivalence of direct and indirect RL. We employ a Gridworld task to verify the influence of different forms of policy gradient, suggesting their differences and relationships experimentally. Finally, we classify current mainstream RL algorithms using the direct and indirect taxonomy, together with other ones including value-based and policy-based, model-based and model-free.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here