DiffOp-net: A Differential Operator-based Fully Convolutional Network for Unsupervised Deformable Image Registration

5 Apr 2024  ·  Jiong Wu ·

Existing unsupervised deformable image registration methods usually rely on metrics applied to the gradients of predicted displacement or velocity fields as a regularization term to ensure transformation smoothness, which potentially limits registration accuracy. In this study, we propose a novel approach to enhance unsupervised deformable image registration by introducing a new differential operator into the registration framework. This operator, acting on the velocity field and mapping it to a dual space, ensures the smoothness of the velocity field during optimization, facilitating accurate deformable registration. In addition, to tackle the challenge of capturing large deformations inside image pairs, we introduce a Cross-Coordinate Attention module (CCA) and embed it into a proposed Fully Convolutional Networks (FCNs)-based multi-resolution registration architecture. Evaluation experiments are conducted on two magnetic resonance imaging (MRI) datasets. Compared to various state-of-the-art registration approaches, including a traditional algorithm and three representative unsupervised learning-based methods, our method achieves superior accuracies, maintaining desirable diffeomorphic properties, and exhibiting promising registration speed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here