Differentially Private Attention Computation

8 May 2023  ·  Yeqi Gao, Zhao Song, Xin Yang ·

Large language models (LLMs) have had a profound impact on numerous aspects of daily life including natural language processing, content generation, research methodologies and so on. However, one crucial issue concerning the inference results of large language models is security and privacy. In many scenarios, the results generated by LLMs could possibly leak many confidential or copyright information. A recent beautiful and breakthrough work [Vyas, Kakade and Barak 2023] focus on such privacy issue of the LLMs from theoretical perspective. It is well-known that computing the attention matrix is one of the major task during the LLMs computation. Thus, how to give a provable privately guarantees of computing the attention matrix is an important research direction. Previous work [Alman and Song 2023, Brand, Song and Zhou 2023] have proposed provable tight result for fast computation of attention without considering privacy concerns. One natural mathematical formulation to quantity the privacy in theoretical computer science graduate school textbook is differential privacy. Inspired by [Vyas, Kakade and Barak 2023], in this work, we provide a provable result for showing how to differentially private approximate the attention matrix. From technique perspective, our result replies on a pioneering work in the area of differential privacy by [Alabi, Kothari, Tankala, Venkat and Zhang 2022].

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here