Differentiable Arbitrating in Zero-sum Markov Games

20 Feb 2023  ·  Jing Wang, Meichen Song, Feng Gao, Boyi Liu, Zhaoran Wang, Yi Wu ·

We initiate the study of how to perturb the reward in a zero-sum Markov game with two players to induce a desirable Nash equilibrium, namely arbitrating. Such a problem admits a bi-level optimization formulation. The lower level requires solving the Nash equilibrium under a given reward function, which makes the overall problem challenging to optimize in an end-to-end way. We propose a backpropagation scheme that differentiates through the Nash equilibrium, which provides the gradient feedback for the upper level. In particular, our method only requires a black-box solver for the (regularized) Nash equilibrium (NE). We develop the convergence analysis for the proposed framework with proper black-box NE solvers and demonstrate the empirical successes in two multi-agent reinforcement learning (MARL) environments.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here