Detection of Iterative Adversarial Attacks via Counter Attack

23 Sep 2020  ·  Matthias Rottmann, Kira Maag, Mathis Peyron, Natasa Krejic, Hanno Gottschalk ·

Deep neural networks (DNNs) have proven to be powerful tools for processing unstructured data. However for high-dimensional data, like images, they are inherently vulnerable to adversarial attacks. Small almost invisible perturbations added to the input can be used to fool DNNs. Various attacks, hardening methods and detection methods have been introduced in recent years. Notoriously, Carlini-Wagner (CW) type attacks computed by iterative minimization belong to those that are most difficult to detect. In this work we outline a mathematical proof that the CW attack can be used as a detector itself. That is, under certain assumptions and in the limit of attack iterations this detector provides asymptotically optimal separation of original and attacked images. In numerical experiments, we experimentally validate this statement and furthermore obtain AUROC values up to 99.73% on CIFAR10 and ImageNet. This is in the upper part of the spectrum of current state-of-the-art detection rates for CW attacks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here