Design of Breathing-states Detector for m-Health Platform using Seismocardiographic Signal

24 Feb 2020  ·  Tilendra Choudhary, L. N. Sharma, M. K. Bhuyan, Kangkana Bora ·

In this work, a seismocardiogram (SCG) based breathing-state measuring method is proposed for m-health applications. The aim of the proposed framework is to assess the human respiratory system by identifying degree-of-breathings, such as breathlessness, normal breathing, and long and labored breathing. For this, it is needed to measure cardiac-induced chest-wall vibrations, reflected in the SCG signal. Orthogonal subspace projection is employed to extract the SCG cycles with the help of a concurrent ECG signal. Subsequently, fifteen statistically significant morphological-features are extracted from each of the SCG cycles. These features can efficiently characterize physiological changes due to varying respiratory rates. Stacked autoencoder (SAE) based architecture is employed for the identification of different respiratory-effort levels. The performance of the proposed method is evaluated and compared with other standard classifiers for 1147 analyzed SCG-beats. The proposed method gives an overall average accuracy of 91.45% in recognizing three different breathing states. The quantitative analysis of the performance results clearly shows the effectiveness of the proposed framework. It may be employed in various healthcare applications, such as pre-screening medical sensors and IoT based remote health-monitoring systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here