Denoising Improves Latent Space Geometry in Text Autoencoders

25 Sep 2019  ·  Tianxiao Shen, Jonas Mueller, Regina Barzilay, Tommi Jaakkola ·

Neural language models have recently shown impressive gains in unconditional text generation, but controllable generation and manipulation of text remain challenging. In particular, controlling text via latent space operations in autoencoders has been difficult, in part due to chaotic latent space geometry. We propose to employ adversarial autoencoders together with denoising (referred as DAAE) to drive the latent space to organize itself. Theoretically, we prove that input sentence perturbations in the denoising approach encourage similar sentences to map to similar latent representations. Empirically, we illustrate the trade-off between text-generation and autoencoder-reconstruction capabilities, and our model significantly improves over other autoencoder variants. Even from completely unsupervised training, DAAE can successfully alter the tense/sentiment of sentences via simple latent vector arithmetic.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here