Delay Sensitive Task Offloading in the 802.11p Based Vehicular Fog Computing Systems

2 Dec 2020  ·  Qiong Wu, Hanxu Liu, Ruhai Wang, Pingyi Fan, Qiang Fan, Zhengquan Li ·

Vehicular fog computing (VFC) is envisioned as a promising solution to process the explosive tasks in autonomous vehicular networks. In the VFC system, task offloading is the key technique to process the computation-intensive tasks efficiently. In the task offloading, the task is transmitted to the VFC system according to the 802.11p standard and processed by the computation resources in the VFC system. The delay of task offloading, consisting of the transmission delay and computing delay, is extremely critical especially for some delay-sensitive applications. Furthermore, the long-term reward of the system (i.e., jointly considers the transmission delay, computing delay, available resources, and diversity of vehicles and tasks) becomes a significantly important issue for providers. Thus, in this article, we propose an optimal task offloading scheme to maximize the long-term reward of the system where 802.11p is employed as the transmission protocol for the communications between vehicles. Specifically, a task offloading problem based on a semi-Markov decision process (SMDP) is formulated. To solve this problem, we utilize an iterative algorithm based on the Bellman equation to approach the desired solution. The performance of the proposed scheme has been demonstrated by extensive numerical results.

PDF Abstract

Categories


Networking and Internet Architecture

Datasets


  Add Datasets introduced or used in this paper