DEEVA: A Deep Learning and IoT Based Computer Vision System to Address Safety and Security of Production Sites in Energy Industry

2 Mar 2020  ·  Nimish M. Awalgaonkar, Haining Zheng, Christopher S. Gurciullo ·

When it comes to addressing the safety/security related needs at different production/construction sites, accurate detection of the presence of workers, vehicles, equipment important and formed an integral part of computer vision-based surveillance systems (CVSS). Traditional CVSS systems focus on the use of different computer vision and pattern recognition algorithms overly reliant on manual extraction of features and small datasets, limiting their usage because of low accuracy, need for expert knowledge and high computational costs. The main objective of this paper is to provide decision makers at sites with a practical yet comprehensive deep learning and IoT based solution to tackle various computer vision related problems such as scene classification, object detection in scenes, semantic segmentation, scene captioning etc. Our overarching goal is to address the central question of What is happening at this site and where is it happening in an automated fashion minimizing the need for human resources dedicated to surveillance. We developed Deep ExxonMobil Eye for Video Analysis (DEEVA) package to handle scene classification, object detection, semantic segmentation and captioning of scenes in a hierarchical approach. The results reveal that transfer learning with the RetinaNet object detector is able to detect the presence of workers, different types of vehicles/construction equipment, safety related objects at a high level of accuracy (above 90%). With the help of deep learning to automatically extract features and IoT technology to automatic capture, transfer and process vast amount of realtime images, this framework is an important step towards the development of intelligent surveillance systems aimed at addressing myriads of open ended problems in the realm of security/safety monitoring, productivity assessments and future decision making.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods