DeepTransport: Learning Spatial-Temporal Dependency for Traffic Condition Forecasting

27 Sep 2017  ·  Xingyi Cheng, Ruiqing Zhang, Jie zhou, Wei Xu ·

Predicting traffic conditions has been recently explored as a way to relieve traffic congestion. Several pioneering approaches have been proposed based on traffic observations of the target location as well as its adjacent regions, but they obtain somewhat limited accuracy due to a lack of mining road topology. To address the effect attenuation problem, we suggest taking into account the traffic of surrounding locations(wider than the adjacent range). We propose an end-to-end framework called DeepTransport, in which Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) are utilized to obtain spatial-temporal traffic information within a transport network topology. In addition, an attention mechanism is introduced to align spatial and temporal information. Moreover, we constructed and released a real-world large traffic condition dataset with a 5-minute resolution. Our experiments on this dataset demonstrate our method captures the complex relationship in the temporal and spatial domains. It significantly outperforms traditional statistical methods and a state-of-the-art deep learning method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here