DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer

20 Jul 2021  ·  Yoni Schirris, Efstratios Gavves, Iris Nederlof, Hugo Mark Horlings, Jonas Teuwen ·

We propose a Deep learning-based weak label learning method for analyzing whole slide images (WSIs) of Hematoxylin and Eosin (H&E) stained tumor tissue not requiring pixel-level or tile-level annotations using Self-supervised pre-training and heterogeneity-aware deep Multiple Instance LEarning (DeepSMILE). We apply DeepSMILE to the task of Homologous recombination deficiency (HRD) and microsatellite instability (MSI) prediction. We utilize contrastive self-supervised learning to pre-train a feature extractor on histopathology tiles of cancer tissue. Additionally, we use variability-aware deep multiple instance learning to learn the tile feature aggregation function while modeling tumor heterogeneity. For MSI prediction in a tumor-annotated and color normalized subset of TCGA-CRC (n=360 patients), contrastive self-supervised learning improves the tile supervision baseline from 0.77 to 0.87 AUROC, on par with our proposed DeepSMILE method. On TCGA-BC (n=1041 patients) without any manual annotations, DeepSMILE improves HRD classification performance from 0.77 to 0.81 AUROC compared to tile supervision with either a self-supervised or ImageNet pre-trained feature extractor. Our proposed methods reach the baseline performance using only 40% of the labeled data on both datasets. These improvements suggest we can use standard self-supervised learning techniques combined with multiple instance learning in the histopathology domain to improve genomic label classification performance with fewer labeled data.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here