DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

6 May 2020Mor Avi-AharonAssaf ArbelleTammy Riklin Raviv

We present the DeepHist - a novel Deep Learning framework for augmenting a network by histogram layers and demonstrate its strength by addressing image-to-image translation problems. Specifically, given an input image and a reference color distribution we aim to generate an output image with the structural appearance (content) of the input (source) yet with the colors of the reference... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper