Deep unsupervised feature selection

25 Sep 2019  ·  Ian Covert, Uygar Sumbul, Su-In Lee ·

Unsupervised feature selection involves finding a small number of highly informative features, in the absence of a specific supervised learning task. Selecting a small number of features is an important problem in many scientific domains with high-dimensional observations. Here, we propose the restricted autoencoder (RAE) framework for selecting features that can accurately reconstruct the rest of the features. We justify our approach through a novel proof that the reconstruction ability of a set of features bounds its performance in downstream supervised learning tasks. Based on this theory, we present a learning algorithm for RAEs that iteratively eliminates features using learned per-feature corruption rates. We apply the RAE framework to two high-dimensional biological datasets—single cell RNA sequencing and microarray gene expression data, which pose important problems in cell biology and precision medicine—and demonstrate that RAEs outperform nine baseline methods, often by a large margin.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods