Deep Subspace Clustering Networks

We present a novel deep neural network architecture for unsupervised subspace clustering. This architecture is built upon deep auto-encoders, which non-linearly map the input data into a latent space. Our key idea is to introduce a novel self-expressive layer between the encoder and the decoder to mimic the "self-expressiveness" property that has proven effective in traditional subspace clustering. Being differentiable, our new self-expressive layer provides a simple but effective way to learn pairwise affinities between all data points through a standard back-propagation procedure. Being nonlinear, our neural-network based method is able to cluster data points having complex (often nonlinear) structures. We further propose pre-training and fine-tuning strategies that let us effectively learn the parameters of our subspace clustering networks. Our experiments show that the proposed method significantly outperforms the state-of-the-art unsupervised subspace clustering methods.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
Task Dataset Model Metric Name Metric Value Global Rank Result Benchmark
Image Clustering Extended Yale-B DSC-2 Accuracy 0.973 # 3
NMI 0.970 # 2

Methods