Deep splitting method for parabolic PDEs

8 Jul 2019  ·  Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, Ariel Neufeld ·

In this paper we introduce a numerical method for nonlinear parabolic PDEs that combines operator splitting with deep learning. It divides the PDE approximation problem into a sequence of separate learning problems. Since the computational graph for each of the subproblems is comparatively small, the approach can handle extremely high-dimensional PDEs. We test the method on different examples from physics, stochastic control and mathematical finance. In all cases, it yields very good results in up to 10,000 dimensions with short run times.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here