Deep Spike Decoder (DSD)

25 Sep 2019  ·  Emrah Adamey, Tarin Ziyaee, Nishanth Alapati, Jun Ye ·

Spike-sorting is of central importance for neuroscience research. We introducea novel spike-sorting method comprising a deep autoencoder trained end-to-endwith a biophysical generative model, biophysically motivated priors, and a self-supervised loss function to training a deep autoencoder. The encoder infers the ac-tion potential event times for each source, while the decoder parameters representeach source’s spatiotemporal response waveform. We evaluate this approach inthe context of real and synthetic multi-channel surface electromyography (sEMG)data, a noisy superposition of motor unit action potentials (MUAPs). Relative toan established spike-sorting method, this autoencoder-based approach shows su-perior recovery of source waveforms and event times. Moreover, the biophysicalnature of the loss functions facilitates interpretability and hyperparameter tuning.Overall, these results demonstrate the efficacy and motivate further developmentof self-supervised spike sorting techniques.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here