Deep Reinforcement Learning for Time Optimal Velocity Control using Prior Knowledge

28 Nov 2018  ·  Gabriel Hartmann, Zvi Shiller, Amos Azaria ·

Autonomous navigation has recently gained great interest in the field of reinforcement learning. However, little attention was given to the time optimal velocity control problem, i.e. controlling a vehicle such that it travels at the maximal speed without becoming dynamically unstable (roll-over or sliding). Time optimal velocity control can be solved numerically using existing methods that are based on optimal control and vehicle dynamics. In this paper, we use deep reinforcement learning to generate the time optimal velocity control. Furthermore, we use the numerical solution to further improve the performance of the reinforcement learner. It is shown that the reinforcement learner outperforms the numerically derived solution, and that the hybrid approach (combining learning with the numerical solution) speeds up the training process.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods