Deep Reinforcement Learning Based Optimal Energy Management of Multi-energy Microgrids with Uncertainties

30 Nov 2023  ·  Yang Cui, Yang Xu, Yang Li, Yijian Wang, Xinpeng Zou ·

Multi-energy microgrid (MEMG) offers an effective approach to deal with energy demand diversification and new energy consumption on the consumer side. In MEMG, it is critical to deploy an energy management system (EMS) for efficient utilization of energy and reliable operation of the system. To help EMS formulate optimal dispatching schemes, a deep reinforcement learning (DRL)-based MEMG energy management scheme with renewable energy source (RES) uncertainty is proposed in this paper. To accurately describe the operating state of the MEMG, the off-design performance model of energy conversion devices is considered in scheduling. The nonlinear optimal dispatching model is expressed as a Markov decision process (MDP) and is then addressed by the twin delayed deep deterministic policy gradient (TD3) algorithm. In addition, to accurately describe the uncertainty of RES, the conditional-least squares generative adversarial networks (C-LSGANs) method based on RES forecast power is proposed to construct the scenarios set of RES power generation. The generated data of RES is used for scheduling to obtain caps and floors for the purchase of electricity and natural gas. Based on this, the superior energy supply sector can formulate solutions in advance to tackle the uncertainty of RES. Finally, the simulation analysis demonstrates the validity and superiority of the method.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here