Deep Neural Networks for Swept Volume Prediction Between Configurations

29 May 2018  ·  Hao-Tien Lewis Chiang, Aleksandra Faust, Lydia Tapia ·

Swept Volume (SV), the volume displaced by an object when it is moving along a trajectory, is considered a useful metric for motion planning. First, SV has been used to identify collisions along a trajectory, because it directly measures the amount of space required for an object to move. Second, in sampling-based motion planning, SV is an ideal distance metric, because it correlates to the likelihood of success of the expensive local planning step between two sampled configurations. However, in both of these applications, traditional SV algorithms are too computationally expensive for efficient motion planning. In this work, we train Deep Neural Networks (DNNs) to learn the size of SV for specific robot geometries. Results for two robots, a 6 degree of freedom (DOF) rigid body and a 7 DOF fixed-based manipulator, indicate that the network estimations are very close to the true size of SV and is more than 1500 times faster than a state of the art SV estimation algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here