Deep Neural Network Approach for Annual Luminance Simulations

14 Sep 2020  ·  Yue Liu, Alex Colburn, Mehlika Inanici ·

Annual luminance maps provide meaningful evaluations for occupants' visual comfort, preferences, and perception. However, acquiring long-term luminance maps require labor-intensive and time-consuming simulations or impracticable long-term field measurements. This paper presents a novel data-driven machine learning approach that makes annual luminance-based evaluations more efficient and accessible. The methodology is based on predicting the annual luminance maps from a limited number of point-in-time high dynamic range imagery by utilizing a deep neural network (DNN). Panoramic views are utilized, as they can be post-processed to study multiple view directions. The proposed DNN model can faithfully predict high-quality annual panoramic luminance maps from one of the three options within 30 minutes training time: a) point-in-time luminance imagery spanning 5% of the year, when evenly distributed during daylight hours, b) one-month hourly imagery generated or collected continuously during daylight hours around the equinoxes (8% of the year); or c) 9 days of hourly data collected around the spring equinox, summer and winter solstices (2.5% of the year) all suffice to predict the luminance maps for the rest of the year. The DNN predicted high-quality panoramas are validated against Radiance (RPICT) renderings using a series of quantitative and qualitative metrics. The most efficient predictions are achieved with 9 days of hourly data collected around the spring equinox, summer and winter solstices. The results clearly show that practitioners and researchers can efficiently incorporate long-term luminance-based metrics over multiple view directions into the design and research processes using the proposed DNN workflow.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here