Deep Learning Based Channel Covariance Matrix Estimation with User Location and Scene Images

19 Jan 2021  ·  Weihua Xu, Feifei Gao, Jianhua Zhang, Xiaoming Tao, Ahmed Alkhateeb ·

Channel covariance matrix (CCM) is one critical parameter for designing the communications systems. In this paper, a novel framework of the deep learning (DL) based CCM estimation is proposed that exploits the perception of the transmission environment without any channel sample or the pilot signals. Specifically, as CCM is affected by the user's movement, we design a deep neural network (DNN) to predict CCM from user location and user speed, and the corresponding estimation method is named as ULCCME. A location denoising method is further developed to reduce the positioning error and improve the robustness of ULCCME. For cases when user location information is not available, we propose an interesting way that uses the environmental 3D images to predict the CCM, and the corresponding estimation method is named as SICCME. Simulation results show that both the proposed methods are effective and will benefit the subsequent channel estimation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here