Deep Learning-Based Automatic Diagnosis System for Developmental Dysplasia of the Hip

7 Sep 2022  ·  Yang Li, Leo Yan Li-Han, Hua Tian ·

As the first-line diagnostic imaging modality, radiography plays an essential role in the early detection of developmental dysplasia of the hip (DDH). Clinically, the diagnosis of DDH relies on manual measurements and subjective evaluation of different anatomical features from pelvic radiographs. This process is inefficient and error-prone and requires years of clinical experience. In this study, we propose a deep learning-based system that automatically detects 14 keypoints from a radiograph, measures three anatomical angles (center-edge, T\"onnis, and Sharp angles), and classifies DDH hips as grades I-IV based on the Crowe criteria. Moreover, a novel data-driven scoring system is proposed to quantitatively integrate the information from the three angles for DDH diagnosis. The proposed keypoint detection model achieved a mean (95% confidence interval [CI]) average precision of 0.807 (0.804-0.810). The mean (95% CI) intraclass correlation coefficients between the center-edge, Tonnis, and Sharp angles measured by the proposed model and the ground-truth were 0.957 (0.952-0.962), 0.947 (0.941-0.953), and 0.953 (0.947-0.960), respectively, which were significantly higher than those of experienced orthopedic surgeons (p<0.0001). In addition, the mean (95% CI) test diagnostic agreement (Cohen's kappa) obtained using the proposed scoring system was 0.84 (0.83-0.85), which was significantly higher than those obtained from diagnostic criteria for individual angle (0.76 [0.75-0.77]) and orthopedists (0.71 [0.63-0.79]). To the best of our knowledge, this is the first study for objective DDH diagnosis by leveraging deep learning keypoint detection and integrating different anatomical measurements, which can provide reliable and explainable support for clinical decision-making.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods