Deep Interleaved Network for Image Super-Resolution With Asymmetric Co-Attention

24 Apr 2020  ·  Feng Li, Runming Cong, Huihui Bai, Yifan He ·

Recently, Convolutional Neural Networks (CNN) based image super-resolution (SR) have shown significant success in the literature. However, these methods are implemented as single-path stream to enrich feature maps from the input for the final prediction, which fail to fully incorporate former low-level features into later high-level features. In this paper, to tackle this problem, we propose a deep interleaved network (DIN) to learn how information at different states should be combined for image SR where shallow information guides deep representative features prediction. Our DIN follows a multi-branch pattern allowing multiple interconnected branches to interleave and fuse at different states. Besides, the asymmetric co-attention (AsyCA) is proposed and attacked to the interleaved nodes to adaptively emphasize informative features from different states and improve the discriminative ability of networks. Extensive experiments demonstrate the superiority of our proposed DIN in comparison with the state-of-the-art SR methods.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here