Deep Density Clustering of Unconstrained Faces

In this paper, we consider the problem of grouping a collection of unconstrained face images in which the number of subjects is not known. We propose an unsupervised clustering algorithm called Deep Density Clustering (DDC) which is based on measuring density affinities between local neighborhoods in the feature space. By learning the minimal covering sphere for each neighborhood, information about the underlying structure is encapsulated. The encapsulation is also capable of locating high-density region of the neighborhood, which aids in measuring the neighborhood similarity. We theoretically show that the encapsulation asymptotically converges to a Parzen window density estimator. Our experiments show that DDC is a superior candidate for clustering unconstrained faces when the number of subjects is unknown. Unlike conventional linkage and density-based methods that are sensitive to the selection operating points, DDC attains more consistent and improved performance. Furthermore, the density-aware property reduces the difficulty in finding appropriate operating points.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here