Deep Convolutional Neural Networks to Diagnose COVID-19 and other Pneumonia Diseases from Posteroanterior Chest X-Rays

2 May 2020  ·  Pierre G. B. Moutounet-Cartan ·

The article explores different deep convolutional neural network architectures trained and tested on posteroanterior chest X-rays of 327 patients who are healthy (152 patients), diagnosed with COVID-19 (125), and other types of pneumonia (48). In particular, this paper looks at the deep convolutional neural networks VGG16 and VGG19, InceptionResNetV2 and InceptionV3, as well as Xception, all followed by a flat multi-layer perceptron and a final 30% drop-out. The paper has found that the best performing network is VGG16 with a final $30$% drop-out trained over 3 classes (COVID-19, No Finding, Other Pneumonia). It has an internal cross-validated accuracy of $93.9(\pm3.4)$%, a COVID-19 sensitivity of $87.7(-1.9,+2)$%, and a No Finding sensitivity of $96.8(\pm0.8)$%. The respective external cross-validated values are $84.1(\pm13.5)$%, $87.7(-1.9,2)$%, and $96.8(\pm0.8)$%. The model optimizer was Adam with a 1e-4 learning rate, and categorical cross-entropy loss. It is hoped that, once this research will be put to practice in hospitals, healthcare professionals will be able in the medium to long-term to diagnosing through machine learning tools possible pneumonia, and if detected, whether it is linked to a COVID-19 infection, allowing the detection of new possible COVID-19 foyers after the end of possible "stop-and-go" lockdowns as expected by until a vaccine is found and widespread. Furthermore, in the short-term, it is hoped practitioners can compare the diagnosis from the deep convolutional neural networks with possible RT-PCR testing results, and if clashing, a Computed Tomography could be performed as they are more accurate in showing COVID-19 pneumonia.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods