Deep Contextual Bandits for Fast Neighbor-Aided Initial Access in mmWave Cell-Free Networks

17 Mar 2021  ·  Insaf Ismath, Samad Ali, Nandana Rajatheva, Matti Latva-aho ·

Access points (APs) in millimeter-wave (mmWave) and sub-THz-based user-centric (UC) networks will have sleep mode functionality. As a result of this, it becomes challenging to solve the initial access (IA) problem when the sleeping APs are activated to start serving users. In this paper, a novel deep contextual bandit (DCB) learning method is proposed to provide instant IA using information from the neighboring active APs. In the proposed approach, beam selection information from the neighboring active APs is used as an input to neural networks that act as a function approximator for the bandit algorithm. Simulations are carried out with realistic channel models generated using the Wireless Insight ray-tracing tool. The results show that the system can respond to dynamic throughput demands with negligible latency compared to the standard baseline 5G IA scheme. The proposed fast beam selection scheme can enable the network to use energy-saving sleep modes without compromising the quality of service due to inefficient IA

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here