Deep Collaborative Learning for Visual Recognition

3 Mar 2017  ·  Yan Wang, Lingxi Xie, Ya zhang, Wenjun Zhang, Alan Yuille ·

Deep neural networks are playing an important role in state-of-the-art visual recognition. To represent high-level visual concepts, modern networks are equipped with large convolutional layers, which use a large number of filters and contribute significantly to model complexity. For example, more than half of the weights of AlexNet are stored in the first fully-connected layer (4,096 filters). We formulate the function of a convolutional layer as learning a large visual vocabulary, and propose an alternative way, namely Deep Collaborative Learning (DCL), to reduce the computational complexity. We replace a convolutional layer with a two-stage DCL module, in which we first construct a couple of smaller convolutional layers individually, and then fuse them at each spatial position to consider feature co-occurrence. In mathematics, DCL can be explained as an efficient way of learning compositional visual concepts, in which the vocabulary size increases exponentially while the model complexity only increases linearly. We evaluate DCL on a wide range of visual recognition tasks, including a series of multi-digit number classification datasets, and some generic image classification datasets such as SVHN, CIFAR and ILSVRC2012. We apply DCL to several state-of-the-art network structures, improving the recognition accuracy meanwhile reducing the number of parameters (16.82% fewer in AlexNet).

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods