Decoupling Dynamics and Reward for Transfer Learning

27 Apr 2018  ·  Amy Zhang, Harsh Satija, Joelle Pineau ·

Current reinforcement learning (RL) methods can successfully learn single tasks but often generalize poorly to modest perturbations in task domain or training procedure. In this work, we present a decoupled learning strategy for RL that creates a shared representation space where knowledge can be robustly transferred. We separate learning the task representation, the forward dynamics, the inverse dynamics and the reward function of the domain, and show that this decoupling improves performance within the task, transfers well to changes in dynamics and reward, and can be effectively used for online planning. Empirical results show good performance in both continuous and discrete RL domains.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here