Decoding billions of integers per second through vectorization

10 Sep 2012  ·  Daniel Lemire, Leonid Boytsov ·

In many important applications -- such as search engines and relational database systems -- data is stored in the form of arrays of integers. Encoding and, most importantly, decoding of these arrays consumes considerable CPU time. Therefore, substantial effort has been made to reduce costs associated with compression and decompression. In particular, researchers have exploited the superscalar nature of modern processors and SIMD instructions. Nevertheless, we introduce a novel vectorized scheme called SIMD-BP128 that improves over previously proposed vectorized approaches. It is nearly twice as fast as the previously fastest schemes on desktop processors (varint-G8IU and PFOR). At the same time, SIMD-BP128 saves up to 2 bits per integer. For even better compression, we propose another new vectorized scheme (SIMD-FastPFOR) that has a compression ratio within 10% of a state-of-the-art scheme (Simple-8b) while being two times faster during decoding.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here