Decentralized Quantum Federated Learning for Metaverse: Analysis, Design and Implementation

20 Jun 2023  ·  Dev Gurung, Shiva Raj Pokhrel, Gang Li ·

With the emerging developments of the Metaverse, a virtual world where people can interact, socialize, play, and conduct their business, it has become critical to ensure that the underlying systems are transparent, secure, and trustworthy. To this end, we develop a decentralized and trustworthy quantum federated learning (QFL) framework. The proposed QFL leverages the power of blockchain to create a secure and transparent system that is robust against cyberattacks and fraud. In addition, the decentralized QFL system addresses the risks associated with a centralized server-based approach. With extensive experiments and analysis, we evaluate classical federated learning (CFL) and QFL in a distributed setting and demonstrate the practicality and benefits of the proposed design. Our theoretical analysis and discussions develop a genuinely decentralized financial system essential for the Metaverse. Furthermore, we present the application of blockchain-based QFL in a hybrid metaverse powered by a metaverse observer and world model. Our implementation details and code are publicly available 1.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here