Debugging using Orthogonal Gradient Descent

17 Jun 2022  ·  Narsimha Chilkuri, Chris Eliasmith ·

In this report we consider the following problem: Given a trained model that is partially faulty, can we correct its behaviour without having to train the model from scratch? In other words, can we ``debug" neural networks similar to how we address bugs in our mathematical models and standard computer code. We base our approach on the hypothesis that debugging can be treated as a two-task continual learning problem. In particular, we employ a modified version of a continual learning algorithm called Orthogonal Gradient Descent (OGD) to demonstrate, via two simple experiments on the MNIST dataset, that we can in-fact \textit{unlearn} the undesirable behaviour while retaining the general performance of the model, and we can additionally \textit{relearn} the appropriate behaviour, both without having to train the model from scratch.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods