Data Strategies for Fleetwide Predictive Maintenance

11 Dec 2018  ·  David Noever ·

For predictive maintenance, we examine one of the largest public datasets for machine failures derived along with their corresponding precursors as error rates, historical part replacements, and sensor inputs. To simplify the time and accuracy comparison between 27 different algorithms, we treat the imbalance between normal and failing states with nominal under-sampling. We identify 3 promising regression and discriminant algorithms with both higher accuracy (96%) and twenty-fold faster execution times than previous work. Because predictive maintenance success hinges on input features prior to prediction, we provide a methodology to rank-order feature importance and show that for this dataset, error counts prove more predictive than scheduled maintenance might imply solely based on more traditional factors such as machine age or last replacement times.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here