Data preprocessing methods for robust Fourier ptychographic microscopy

4 Jun 2017  ·  Yan Zhang, An Pan, Ming Lei, Baoli Yao ·

Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high resolution and wide field-of-view. In current FP experimental setup, the dark-field images with high-angle illuminations are easily submerged by stray light and background noise due to the low signal-to-noise ratio, thus significantly degrading the reconstruction quality and also imposing a major restriction on the synthetic numerical aperture (NA) of the FP approach. To this end, an overall and systematic data preprocessing scheme for noise removal from FP's raw dataset is provided, which involves sampling analysis as well as underexposed/overexposed treatments, then followed by the elimination of unknown stray light and suppression of inevitable background noise, especially Gaussian noise and CCD dark current in our experiments. The reported non-parametric scheme facilitates great enhancements of the FP's performance, which has been demonstrated experimentally that the benefits of noise removal by these methods far outweigh its defects of concomitant signal loss. In addition, it could be flexibly cooperated with the existing state-of-the-art algorithms, producing a stronger robustness of the FP approach in various applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here