Data Pre-Processing and Evaluating the Performance of Several Data Mining Methods for Predicting Irrigation Water Requirement

1 Mar 2020  ·  Mahmood A. Khan, Md Zahidul Islam, Mohsin Hafeez ·

Recent drought and population growth are planting unprecedented demand for the use of available limited water resources. Irrigated agriculture is one of the major consumers of freshwater. A large amount of water in irrigated agriculture is wasted due to poor water management practices. To improve water management in irrigated areas, models for estimation of future water requirements are needed. Developing a model for forecasting irrigation water demand can improve water management practices and maximise water productivity. Data mining can be used effectively to build such models. In this study, we prepare a dataset containing information on suitable attributes for forecasting irrigation water demand. The data is obtained from three different sources namely meteorological data, remote sensing images and water delivery statements. In order to make the prepared dataset useful for demand forecasting and pattern extraction, we pre-process the dataset using a novel approach based on a combination of irrigation and data mining knowledge. We then apply and compare the effectiveness of different data mining methods namely decision tree (DT), artificial neural networks (ANNs), systematically developed forest (SysFor) for multiple trees, support vector machine (SVM), logistic regression, and the traditional Evapotranspiration (ETc) methods and evaluate the performance of these models to predict irrigation water demand. Our experimental results indicate the usefulness of data pre-processing and the effectiveness of different classifiers. Among the six methods we used, SysFor produces the best prediction with 97.5% accuracy followed by a decision tree with 96% and ANN with 95% respectively by closely matching the predictions with actual water usage. Therefore, we recommend using SysFor and DT models for irrigation water demand forecasting.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here