Data-Driven Reachability Analysis with Christoffel Functions

28 Apr 2021  ·  Alex Devonport, Forest Yang, Laurent El Ghaoui, Murat Arcak ·

We present an algorithm for data-driven reachability analysis that estimates finite-horizon forward reachable sets for general nonlinear systems using level sets of a certain class of polynomials known as Christoffel functions. The level sets of Christoffel functions are known empirically to provide good approximations to the support of probability distributions: the algorithm uses this property for reachability analysis by solving a probabilistic relaxation of the reachable set computation problem. We also provide a guarantee that the output of the algorithm is an accurate reachable set approximation in a probabilistic sense, provided that a certain sample size is attained. We also investigate three numerical examples to demonstrate the algorithm's capabilities, such as providing non-convex reachable set approximations and detecting holes in the reachable set.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here