Data-driven Random Fourier Features using Stein Effect

23 May 2017  ·  Wei-Cheng Chang, Chun-Liang Li, Yiming Yang, Barnabas Poczos ·

Large-scale kernel approximation is an important problem in machine learning research. Approaches using random Fourier features have become increasingly popular [Rahimi and Recht, 2007], where kernel approximation is treated as empirical mean estimation via Monte Carlo (MC) or Quasi-Monte Carlo (QMC) integration [Yang et al., 2014]. A limitation of the current approaches is that all the features receive an equal weight summing to 1. In this paper, we propose a novel shrinkage estimator from "Stein effect", which provides a data-driven weighting strategy for random features and enjoys theoretical justifications in terms of lowering the empirical risk. We further present an efficient randomized algorithm for large-scale applications of the proposed method. Our empirical results on six benchmark data sets demonstrate the advantageous performance of this approach over representative baselines in both kernel approximation and supervised learning tasks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here