Data-driven Moving Horizon Estimation for Angular Velocity of Space Noncooperative Target in Eddy Current De-tumbling Mission

13 Jan 2023  ·  Xiyao Liu, Haitao Chang, Zhenyu Lu, Panfeng Huang ·

Angular velocity estimation is critical for eddy current de-tumbling of noncooperative space targets. However, unknown model of the noncooperative target and few observation data make the model-based estimation methods challenged. In this paper, a Data-driven Moving Horizon Estimation method is proposed to estimate the angular velocity of the noncooperative target with de-tumbling torque. In this method, model-free state estimation of the angular velocity can be achieved using only one historical trajectory data that satisfies the rank condition. With local linear approximation, the Willems fundamental lemma is extended to nonlinear autonomous systems, and the rank condition for the historical trajectory data is deduced. Then, a data-driven moving horizon estimation algorithm based on the M step Lyapunov function is designed, and the time-discount robust stability of the algorithm is given. In order to illustrate the effectiveness of the proposed algorithm, experiments and simulations are performed to estimate the angular velocity in eddy current de-tumbling with only de-tumbling torque measurement.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here